Essay : Cracking 99% of all Time Trials - Written by Mushy.

The Call Flow Approach :-

What is a call flow ?

When a program is run or executed, it runs through a series of

functions, procedures and instructions (both procedures

and functions are collections of instructions that are

grouped together to save space and time). A call flow

is a listing or diagram of the path a program takes

when it executes. This path can be different depending

on the circumstances when the program was run. Imagine

six procedures as follows :

1.) GetSystemTime. (Checks the system time).

2.) Installed. (Checks when you installed the program).

3.) Expired. (Displays an expired message).

4.) DaysLeft. (Displays the message 'you have % days left').

5.) Halt. (Quits the program).

6.) Main. (The main program).

Using the procedures, the psuedo asm code of a Time Trial

protection would be something like this :

00000001 :Call GetSystemTime.

00000002 :Call Installed.

00000003 :if (GetSystemTime - Installed) is greater than 30 days then

00000004 : Call Expired,

00000005 : Jmp Halt.

00000006 :otherwise

00000007 : Call DaysLeft,

00000008 : Jmp Main.

This would look something like this in real terms :

Call 041829B0 (GetSystemTime)

Call 0492832C (Installed)

Cmp Ax,Bx (if statement)

JL 04927435 (Jump or No Jump, depending on values ax and bx)

Call 04348234 (Expired)

Jmp 0432833C (Halt)

---JL Address---

Call 04583BC0 (DaysLeft Message)

Jmp 042392BC (Main Program)

If you look at the above code you will see that the way the

program runs depends on the values of ax and bx before the JL

command. The problem is that in a large disassembly of code it

is often difficult to find the right place to patch because there

are so many cmp/jl or cmp/jne occurances. So how do we go about

finding the correct location ?

Finding the right location.

Using the above code we can generate two possible program flows.

When you are still in the 30 day trial period, the call flow

would look like this :

GetSystemTime

Installed

Cmp ax,bx

JL (Jump)

DaysLeft

Main.

When the trial period has expired the call flow would look like

this :

GetSystemTime

Installed

Cmp ax,bx

JL (No Jump)

Expired

Halt.

Using these two listings we can see that up until the JL command,

everything is the same, except that the first listing Jumps and

the second listing doesn`t. The JL command is dependant on the

value of ax and bx. To crack a time trial, all we have to do

is to either change the value of ax and bx (The correct way) so

that you will always have a trial period (Or) change the JL to a

Jmp and force the program to use the path of the first call flow.

Ok,I understand the principle. Now show me how to do it ?

The tools we need :

SoftIce v3.23 installed with the Symbol Loader.

A hex editor.

(No disassembler is needed)

Firstly, load up the symbol loader that is installed with softice.

You can find it in the folder on the taskbar. Go to the file

menu in the symbol loader and click on 'open module'. Then find and

click on the Executable file / Program that you wish to crack.

Once this has been done, go to the Module menu and click on Load

Module. Normally, this will greet you with an error message telling

you that an error has occured during sysmbol translation. Just click

on 'Yes' to continue loading the exe file. Softice will now break due

to symbol loader which can be confirmed by looking in the information

window. You will also see a lot of lines in the code window that will

look like this :

FFFF INVALID

FFFF INVALID

FFFF INVALID

FFFF INVALID

FFFF INVALID

etc,.......

Ignore this,.... it is not an error. It is just displaying an area in

memory that softice can`t determine yet. At this moment we are just

going to set up softice so that it displays what we want in the

command window. (Remember that everything in the command window

is logged).

Step 1 : Close the code window.

Start by typing 'wc' in softice. This command toggles

the code window. We DONT want the code window to display, so make

sure that this window is closed. You can also close this window by

using the mouse. You can so this by clicking on the top edge of the

window that you want to close and drag it upwards as far as it will

go. This will make the window disappear.

Step 2 : Set a breakpoint on GetSystemTime.

We now need to set a breakpoint on GetSystemTime (One of the many

used api functions to return the current Date and Time). You can

set the breakpoint by typing 'BPX GetSystemTime' in the command

window now. By the way,... GetSystemTime is just the address of

the function. If you knew what the address of the function was,

you could also of typed 'BPX 004283CD' etc,..... This means that

you can also add an offset to a BPX for example 'BPX GetSystemTime + 4'.

This will break at an offset of 4 from the start of the function.

Step 3 : Continue loading the program.

Now that you have set the breakpoint in softice (BPX GetSystemTime), it

is time to let the program continue to load and run. All you have to do

is to press CTRL and D together. As the program continues to load and

run, eventually it will execute the Function 'GetSystemTime'. When

this happens, softice will pop up and pause the program at the beginning

of the Function. You will see the text 'BPX due to KERNEL32!GetSystemTime'

appear in the command window. We are now in the correct place to start

logging.

Step 4 : Step out of the Function.

Now that you are placed at beginning of the function 'GetSystemTime'.

We need to step past it, so that we are at the next asm command

directly after the whole function has executed. (Note: The function

'GetSystemTime' is part of the Kernel32.dll found in the windows

system directory). This function will always run the same set of

commands regardless of the computers state, therefore we do not need

to log the commands of this function. To step to the very next asm

instruction after the function, all you need to do is press F11

(Function key 11) once. It is at this point that things start to get

interesting.

Step 5 : Log all commands, up until the nag screen.

It`s now time to log everything. All you have to do is step through

the code by pressing F10 (Function key 10) until the nag screen

that display`s 'You have % day`s left' appear. You can hold down

F10 until the screen pops up. You will notice that all the lines

of executed code are displayed in the command window. All of this

information is being logged in the softice Buffer.

Step 6 : Save the log file.

When the nag screen appears, it is time to save the first log file.

You do this by clicking on the softice symbol loader that should

still be loaded. It may be minimised at the bottom of your screen. If

so, then just maximise it and go to the File Menu and click on

'Save softice history as,...'. Save this file as Log1.txt . If you

load this file into a text editor like wordpad or notepad, you will

see that it has logged the command windows activity from softice. This

is our 'First Call Flow' file. Get the idea :-).....

Step 7 : Set the date forward and do it all again.

**

What you need to do now is to create a second call log file, but

this time you need to set the date of your system forwards so that

the time trial will show the expired message. :-). This will force

the flow of the program to take a different path sometime after the

'GetSystemTime' Function, but before the nag screen appears.

Step 8 : Compare the two log files.

After you have completed all the steps again and saved a second log

file, you need to compare them. Below, I have included two sample

log files from a new Micro$oft drawing package that supposedly is

well protected. :

LOG FILE 1. (You have % days left)

Break due to BPX KERNEL32!GetSystemTime (ET=33.15 milliseconds)

Break due to G (ET=383.02 microseconds)

015F:78026B90 663B0512870378 CMP AX,[78038712]

015F:78026B97 756B JNZ 78026C04 (JUMP �)

015F:78026C04 8D8534FFFFFF LEA EAX,[EBP-00CC]

015F:78026C0A 50 PUSH EAX

015F:78026C0B FF1540D10278 CALL [KERNEL32!GetTimeZoneInformation]

015F:78026C11 83F8FF CMP EAX,-01

015F:78026C14 7430 JZ 78026C46 (NO JUMP)

015F:78026C16 83F802 CMP EAX,02

015F:78026C19 7527 JNZ 78026C42 (NO JUMP)

015F:78026C1B 66837DCE00 CMP WORD PTR [EBP-32],00

015F:78026C20 7420 JZ 78026C42 (NO JUMP)

015F:78026C22 837DDC00 CMP DWORD PTR [EBP-24],00

015F:78026C26 741A JZ 78026C42 (NO JUMP)

015F:78026C28 6A01 PUSH 01

015F:78026C2A 58 POP EAX

015F:78026C2B 56 PUSH ESI

015F:78026C2C 57 PUSH EDI

015F:78026C2D 8D75E0 LEA ESI,[EBP-20]

015F:78026C30 BF08870378 MOV EDI,78038708

015F:78026C35 A5 MOVSD

015F:78026C36 A5 MOVSD

015F:78026C37 A5 MOVSD

015F:78026C38 A5 MOVSD

015F:78026C39 5F POP EDI

015F:78026C3A A300870378 MOV [78038700],EAX

015F:78026C3F 5E POP ESI

015F:78026C40 EB90 JMP 78026CD2 (JUMP �)

015F:78026BD2 50 PUSH EAX

015F:78026BD3 0FB745FC MOVZX EAX,WORD PTR [EBP-04]

015F:78026BD7 50 PUSH EAX

015F:78026BD8 0FB745FA MOVZX EAX,WORD PTR [EBP-06]

015F:78026BDC 50 PUSH EAX

015F:78026BDD 0FB745F8 MOVZX EAX,WORD PTR [EBP-08]

015F:78026BE1 50 PUSH EAX

015F:78026BE2 0FB745F6 MOVZX EAX,WORD PTR [EBP-0A]

015F:78026BE6 50 PUSH EAX

015F:78026BE7 0FB745F2 MOVZX EAX,WORD PTR [EBP-0E]

015F:78026BEB 50 PUSH EAX

015F:78026BEC 0FB745F0 MOVZX EAX,WORD PTR [EBP-10]

015F:78026BF0 50 PUSH EAX

015F:78026BF1 E8EE000000 CALL 78026CE4

015F:78026BF6 8B4D08 MOV ECX,[EBP+08]

015F:78026BF9 83C41C ADD ESP,1C

015F:78026BFC 85C9 TEST ECX,ECX

015F:78026BFE 7402 JZ 78026C02 (NO JUMP)

015F:78026C00 8901 MOV [ECX],EAX

015F:78026C02 C9 LEAVE

015F:78026C03 C3 RET

015F:300D2072 83C404 ADD ESP,04

015F:300D2075 8D4C2410 LEA ECX,[ESP+10]

015F:300D2079 51 PUSH ECX

015F:300D207A FF15B4841030 CALL [301084B4]

015F:300D2080 83C404 ADD ESP,04

015F:300D2083 8BF0 MOV ESI,EAX

015F:300D2085 8D54243C LEA EDX,[ESP+3C]

015F:300D2089 B909000000 MOV ECX,00000009

015F:300D208E 8D7C2418 LEA EDI,[ESP+18]

015F:300D2092 8D442418 LEA EAX,[ESP+18]

015F:300D2096 52 PUSH EDX

015F:300D2097 50 PUSH EAX

015F:300D2098 F3A5 REPZ MOVSD

015F:300D209A E8E1FDFFFF CALL 300D1E80

015F:300D209F 83C408 ADD ESP,08

015F:300D20A2 85C0 TEST EAX,EAX

015F:300D20A4 7E19 JLE 300D20BF (JUMP �)

015F:300D20BF 8D442460 LEA EAX,[ESP+60]

015F:300D20C3 8D4C2418 LEA ECX,[ESP+18]

015F:300D20C7 50 PUSH EAX

015F:300D20C8 51 PUSH ECX

015F:300D20C9 E8B2FDFFFF CALL 300D1E80

015F:300D20CE 83C408 ADD ESP,08

015F:300D20D1 85C0 TEST EAX,EAX

015F:300D20D3 7E33 JLE 300D2108 (JUMP �)

015F:300D2108 6820D91630 PUSH 3016D920

015F:300D210D E83EFCFFFF CALL 300D1D50

015F:300D2112 83C404 ADD ESP,04

015F:300D2115 85C0 TEST EAX,EAX

015F:300D2117 7410 JZ 300D2129 (JUMP �)

015F:300D2129 391D20D91630 CMP [3016D920],EBX

015F:300D212F 0F85D6010000 JNZ 300D230B (JUMP �)

015F:300D230B 6A4C PUSH 4C

015F:300D230D 6824D91630 PUSH 3016D924

015F:300D2312 E8E9F9FFFF CALL 300D1D00

015F:300D2317 8B0D20D91630 MOV ECX,[3016D920]

015F:300D231D 83C408 ADD ESP,08

015F:300D2320 3BC1 CMP EAX,ECX

015F:300D2322 0F841DFEFFFF JZ 300D2145 (JUMP �)

015F:300D2145 8D542418 LEA EDX,[ESP+18]

015F:300D2149 6848D91630 PUSH 3016D948

015F:300D214E 52 PUSH EDX

015F:300D214F E82CFDFFFF CALL 300D1E80

015F:300D2154 83C408 ADD ESP,08

015F:300D2157 85C0 TEST EAX,EAX

015F:300D2159 7D26 JGE 300D2181 (JUMP �)

015F:300D2181 803DA480163003 CMP BYTE PTR [301680A4],03

015F:300D2188 0F876D010000 JA 300D22FB (NO JUMP)

015F:300D218E 8BAC24D0000000 MOV EBP,[ESP+000000D0]

015F:300D2195 C745009F860100 MOV DWORD PTR [EBP+00],0001869F

015F:300D219C A0A4801630 MOV AL,[301680A4]

015F:300D21A1 A801 TEST AL,01

015F:300D21A3 744B JZ 300D21F0 (NO JUMP)

015F:300D21A5 33C0 XOR EAX,EAX

015F:300D21A7 8D4C2418 LEA ECX,[ESP+18]

015F:300D21AB A0A5801630 MOV AL,[301680A5]

015F:300D21B0 51 PUSH ECX

015F:300D21B1 6824D91630 PUSH 3016D924

015F:300D21B6 8D3440 LEA ESI,[EAX*2+EAX]

015F:300D21B9 C1E603 SHL ESI,03

015F:300D21BC E85FFDFFFF CALL 300D1F20

015F:300D21C1 83C408 ADD ESP,08

015F:300D21C4 3BC3 CMP EAX,EBX

015F:300D21C6 0F8C2F010000 JL 300D22FB (NO JUMP)

015F:300D21CC 3BC6 CMP EAX,ESI

015F:300D21CE 7C0A JL 300D21DA (NO JUMP)

015F:300D21D0 BB04000000 MOV EBX,00000004

015F:300D21D5 E9E6000000 JMP 300D22C0 (JUMP �)

015F:300D22C0 8B4500 MOV EAX,[EBP+00]

015F:300D22C3 33C9 XOR ECX,ECX

015F:300D22C5 8A0DA9801630 MOV CL,[301680A9]

015F:300D22CB 3BC1 CMP EAX,ECX

015F:300D22CD 7F05 JG 300D22D4 (JUMP �)

015F:300D22D4 6A4C PUSH 4C

015F:300D22D6 6824D91630 PUSH 3016D924

015F:300D22DB E820FAFFFF CALL 300D1D00

015F:300D22E0 83C408 ADD ESP,08

015F:300D22E3 A320D91630 MOV [3016D920],EAX

015F:300D22E8 6820D91630 PUSH 3016D920

015F:300D22ED E80EFBFFFF CALL 300D1E00

015F:300D22F2 83C404 ADD ESP,04

015F:300D22F5 85C0 TEST EAX,EAX

015F:300D22F7 8BC3 MOV EAX,EBX

015F:300D22F9 7505 JNZ 300D2300 (JUMP �)

015F:300D2300 5F POP EDI

015F:300D2301 5E POP ESI

015F:300D2302 5D POP EBP

015F:300D2303 5B POP EBX

015F:300D2304 81C4BC000000 ADD ESP,000000BC

015F:300D230A C3 RET

015F:3000ADB6 8BF0 MOV ESI,EAX

015F:3000ADB8 83C404 ADD ESP,04

015F:3000ADBB 8D46FF LEA EAX,[ESI-01]

015F:3000ADBE 83F805 CMP EAX,05

015F:3000ADC1 773D JA 3000AE00 (NO JUMP)

LOG FILE 2. (The demo has expired)

KERNEL32!GetSystemTime

Break due to G (ET=380.57 microseconds)

015F:78026B8C 668B45EA MOV AX,[EBP-16]

015F:78026B90 663B0512870378 CMP AX,[78038712]

015F:78026B97 756B JNZ 78026C04 (JUMP �)

015F:78026C04 8D8534FFFFFF LEA EAX,[EBP-00CC]

015F:78026C0A 50 PUSH EAX

015F:78026C0B FF1540D10278 CALL [KERNEL32!GetTimeZoneInformation]

015F:78026C11 83F8FF CMP EAX,-01

015F:78026C14 7430 JZ 78026C46 (NO JUMP)

015F:78026C16 83F802 CMP EAX,02

015F:78026C19 7527 JNZ 78026C42 (NO JUMP)

015F:78026C1B 66837DCE00 CMP WORD PTR [EBP-32],00

015F:78026C20 7420 JZ 78026C42 (NO JUMP)

015F:78026C22 837DDC00 CMP DWORD PTR [EBP-24],00

015F:78026C26 741A JZ 78026C42 (NO JUMP)

015F:78026C28 6A01 PUSH 01

015F:78026C2A 58 POP EAX

015F:78026C2B 56 PUSH ESI

015F:78026C2C 57 PUSH EDI

015F:78026C2D 8D75E0 LEA ESI,[EBP-20]

015F:78026C30 BF08870378 MOV EDI,78038708

015F:78026C35 A5 MOVSD

015F:78026C36 A5 MOVSD

015F:78026C37 A5 MOVSD

015F:78026C38 A5 MOVSD

015F:78026C39 5F POP EDI

015F:78026C3A A300870378 MOV [78038700],EAX

015F:78026C3F 5E POP ESI

015F:78026C40 EB90 JMP 78026CD2 (JUMP �)

015F:78026BD2 50 PUSH EAX

015F:78026BD3 0FB745FC MOVZX EAX,WORD PTR [EBP-04]

015F:78026BD7 50 PUSH EAX

015F:78026BD8 0FB745FA MOVZX EAX,WORD PTR [EBP-06]

015F:78026BDC 50 PUSH EAX

015F:78026BDD 0FB745F8 MOVZX EAX,WORD PTR [EBP-08]

015F:78026BE1 50 PUSH EAX

015F:78026BE2 0FB745F6 MOVZX EAX,WORD PTR [EBP-0A]

015F:78026BE6 50 PUSH EAX

015F:78026BE7 0FB745F2 MOVZX EAX,WORD PTR [EBP-0E]

015F:78026BEB 50 PUSH EAX

015F:78026BEC 0FB745F0 MOVZX EAX,WORD PTR [EBP-10]

015F:78026BF0 50 PUSH EAX

015F:78026BF1 E8EE000000 CALL 78026CE4

015F:78026BF6 8B4D08 MOV ECX,[EBP+08]

015F:78026BF9 83C41C ADD ESP,1C

015F:78026BFC 85C9 TEST ECX,ECX

015F:78026BFE 7402 JZ 78026C02 (NO JUMP)

015F:78026C00 8901 MOV [ECX],EAX

015F:78026C02 C9 LEAVE

015F:78026C03 C3 RET

015F:300D2072 83C404 ADD ESP,04

015F:300D2075 8D4C2410 LEA ECX,[ESP+10]

015F:300D2079 51 PUSH ECX

015F:300D207A FF15B4841030 CALL [301084B4]

015F:300D2080 83C404 ADD ESP,04

015F:300D2083 8BF0 MOV ESI,EAX

015F:300D2085 8D54243C LEA EDX,[ESP+3C]

015F:300D2089 B909000000 MOV ECX,00000009

015F:300D208E 8D7C2418 LEA EDI,[ESP+18]

015F:300D2092 8D442418 LEA EAX,[ESP+18]

015F:300D2096 52 PUSH EDX

015F:300D2097 50 PUSH EAX

015F:300D2098 F3A5 REPZ MOVSD

015F:300D209A E8E1FDFFFF CALL 300D1E80

015F:300D209F 83C408 ADD ESP,08

015F:300D20A2 85C0 TEST EAX,EAX

015F:300D20A4 7E19 JLE 300D20BF (JUMP �)

015F:300D20BF 8D442460 LEA EAX,[ESP+60]

015F:300D20C3 8D4C2418 LEA ECX,[ESP+18]

015F:300D20C7 50 PUSH EAX

015F:300D20C8 51 PUSH ECX

015F:300D20C9 E8B2FDFFFF CALL 300D1E80

015F:300D20CE 83C408 ADD ESP,08

015F:300D20D1 85C0 TEST EAX,EAX

015F:300D20D3 7E33 JLE 300D2108 (JUMP �)

015F:300D2108 6820D91630 PUSH 3016D920

015F:300D210D E83EFCFFFF CALL 300D1D50

015F:300D2112 83C404 ADD ESP,04

015F:300D2115 85C0 TEST EAX,EAX

015F:300D2117 7410 JZ 300D2129 (JUMP �)

015F:300D2129 391D20D91630 CMP [3016D920],EBX

015F:300D212F 0F85D6010000 JNZ 300D230B (JUMP �)

015F:300D230B 6A4C PUSH 4C

015F:300D230D 6824D91630 PUSH 3016D924

015F:300D2312 E8E9F9FFFF CALL 300D1D00

015F:300D2317 8B0D20D91630 MOV ECX,[3016D920]

015F:300D231D 83C408 ADD ESP,08

015F:300D2320 3BC1 CMP EAX,ECX

015F:300D2322 0F841DFEFFFF JZ 300D2145 (JUMP �)

015F:300D2145 8D542418 LEA EDX,[ESP+18]

015F:300D2149 6848D91630 PUSH 3016D948

015F:300D214E 52 PUSH EDX

015F:300D214F E82CFDFFFF CALL 300D1E80

015F:300D2154 83C408 ADD ESP,08

015F:300D2157 85C0 TEST EAX,EAX

015F:300D2159 7D26 JGE 300D2181 (JUMP �)

015F:300D2181 803DA480163003 CMP BYTE PTR [301680A4],03

015F:300D2188 0F876D010000 JA 300D22FB (NO JUMP)

015F:300D218E 8BAC24D0000000 MOV EBP,[ESP+000000D0]

015F:300D2195 C745009F860100 MOV DWORD PTR [EBP+00],0001869F

015F:300D219C A0A4801630 MOV AL,[301680A4]

015F:300D21A1 A801 TEST AL,01

015F:300D21A3 744B JZ 300D21F0 (NO JUMP)

015F:300D21A5 33C0 XOR EAX,EAX

015F:300D21A7 8D4C2418 LEA ECX,[ESP+18]

015F:300D21AB A0A5801630 MOV AL,[301680A5]

015F:300D21B0 51 PUSH ECX

015F:300D21B1 6824D91630 PUSH 3016D924

015F:300D21B6 8D3440 LEA ESI,[EAX*2+EAX]

015F:300D21B9 C1E603 SHL ESI,03

015F:300D21BC E85FFDFFFF CALL 300D1F20

015F:300D21C1 83C408 ADD ESP,08

015F:300D21C4 3BC3 CMP EAX,EBX

015F:300D21C6 0F8C2F010000 JL 300D22FB (NO JUMP)

015F:300D21CC 3BC6 CMP EAX,ESI

015F:300D21CE 7C0A JL 300D21DA (JUMP �)

015F:300D21DA 2BF0 SUB ESI,EAX

015F:300D21DC B8ABAAAA2A MOV EAX,2AAAAAAB

015F:300D21E1 F7EE IMUL ESI

015F:300D21E3 C1FA02 SAR EDX,02

015F:300D21E6 8BC2 MOV EAX,EDX

015F:300D21E8 C1E81F SHR EAX,1F

015F:300D21EB 03D0 ADD EDX,EAX

015F:300D21ED 895500 MOV [EBP+00],EDX

015F:300D21F0 F605A480163002 TEST BYTE PTR [301680A4],02

015F:300D21F7 0F84B3000000 JZ 300D22B0 (JUMP �)

015F:300D22B0 B909000000 MOV ECX,00000009

015F:300D22B5 8D742418 LEA ESI,[ESP+18]

015F:300D22B9 BF48D91630 MOV EDI,3016D948

015F:300D22BE F3A5 REPZ MOVSD

015F:300D22C0 8B4500 MOV EAX,[EBP+00]

015F:300D22C3 33C9 XOR ECX,ECX

015F:300D22C5 8A0DA9801630 MOV CL,[301680A9]

015F:300D22CB 3BC1 CMP EAX,ECX

015F:300D22CD 7F05 JG 300D22D4 (JUMP �)

015F:300D22D4 6A4C PUSH 4C

015F:300D22D6 6824D91630 PUSH 3016D924

015F:300D22DB E820FAFFFF CALL 300D1D00

015F:300D22E0 83C408 ADD ESP,08

015F:300D22E3 A320D91630 MOV [3016D920],EAX

015F:300D22E8 6820D91630 PUSH 3016D920

015F:300D22ED E80EFBFFFF CALL 300D1E00

015F:300D22F2 83C404 ADD ESP,04

015F:300D22F5 85C0 TEST EAX,EAX

015F:300D22F7 8BC3 MOV EAX,EBX

015F:300D22F9 7505 JNZ 300D2300 (JUMP �)

015F:300D2300 5F POP EDI

015F:300D2301 5E POP ESI

015F:300D2302 5D POP EBP

015F:300D2303 5B POP EBX

015F:300D2304 81C4BC000000 ADD ESP,000000BC

015F:300D230A C3 RET

015F:3000ADB6 8BF0 MOV ESI,EAX

015F:3000ADB8 83C404 ADD ESP,04

015F:3000ADBB 8D46FF LEA EAX,[ESI-01]

015F:3000ADBE 83F805 CMP EAX,05

015F:3000ADC1 773D JA 3000AE00 (JUMP �)

Step 9 : Find the first point where the two log files differ.

You may have noticed that the two log files are identical until the address 015F:3000ADC1.

In the first log file, the command at this address doesn`t jump, but in the second log file,

the very same command Jumps. This is because the value of EAX at that point in time are

different in the two logs.

Have a look at the three lines of code :

LEA EAX,[ESI-01] This looks at the byte at the address ESI-01 and puts the value in EAX.

CMP EAX,05 This looks to see if the value in EAX is equal to 5.

JA 3000AE00 Jump if Above to address 300AE00.

Step 10 : What do I do now ?

We need to change the file so that the JA command does NOT jump. You can do this several ways.

The cheap`n`nasty way is to nop(No Operation) the 'JA 3000AE00' command by changing the two

values '77 3D' at address 015F:3000ADC1 to '90 90'. Although this will do the job most of the

time, the correct way is to lie to the rest of the program by changing the 'LEA EAX,[ESI-01]'

which is 3 bytes long ,the 'CMP EAX,05' which is also 3 bytes and the 'JA' command (2 bytes)

, (8 bytes in total for the three asm commands) with the command 'MOV EAX,00000005'

(5 bytes long) and 3 'NOP' commands (1 byte each). This ensures that the EAX register has the

correct value and you are replacing the same ammount of bytes in the program.

Step 11 : Pathcing the program.

All that remains now is to load your program into your favourite Hex editor and search for

the pattern of bytes found in the log file for the LEA,CMP and JA commands and patch it.

For this example,....

Replace '8D46FF83F805773D' with 'B805000000909090'.

B805000000 = MOV EAX,05

90 = NOP

Note : You may need to narrow down your search for these bytes by adding the two lines of

bytes found above the asm code you are looking for into your search query.

Ending Note.

This way of cracking which I call the 'Call Flow Method' has many other possibilities where

there are two states of execution.

For instance,....

Cracking CRC checking routines (Program modified/Not modified),

Dongle protection (Dongle plugged in/Not plugged in),

Three tries and your out password protection,

Programs that only let you use a feature a certain number of times.

I hope this tuorial will help people not only to speed up the cracking process, but also help

to understand HOW a program works and aid in the cracking of the more difficult targets.

I`m now off to drink loads of caffine and give my head a rest before starting my next

tut.

L8R Mushy :-)

Greetz go to :

The TCS Crew. (Best in the land ;-)

KM. (Only 1 more year to go : Freedom!!!!)

The Magician (Keep those degrees rolling and don`t let the fedz win.)

VnC (See ya at the show. Phone Me!!)

Everyone at +fravia`s msgbd.

Jeff (Great cracking board. Like the TIP of the day)

