Anatomy of a Hack

By Rik Farrow , Network Magazine

Dec 1, 1999 (12:00 AM)

URL: http://www.networkmagazine.com/article/NMG20000510S0049

While hacking has yet to go out of style, the notion of putting up a system on the

Internet and inviting hackers to take a crack at it goes in and out of fashion. In the

summer of 1999, the hacker challenge was very much in fashion. For instance, as

an advertising stunt, Microsoft exposed a Windows 2000 Web server to show off

its security and reliability. The server soon disappeared from the Internet, only to

reappear later withMicrosoft claiming “power failure” (which affected only that

system).

The Linux PPC (Linux on the PowerPC architecture) group (www.linuxppc.com)

put up a system that you could keep if you cracked the Web server. After seven

weeks and no crashes or cracks (and only one reboot), the PPC folks ended the

online challenge (because people were attacking their ISP).

In an unrelated challenge, a PCWeek test site hosted a Windows NT system and a

Linux-on-Intel system. After several days, the Linux system was cracked and the

NT system wasn’t. But rather than trying to glean information about the relative

security of these two operating systems, this article will review the steps that the

hacker took in replacing the home page (which was the challenge) on the

Linux-based Apache Web server.

Jfs, the handle used by the Spanish cracker of the Linux system, provided a record

with some of his probes and a lot of his thought processes, which you can find at

his Web site. His successful attack nicely illustrates what I consider typical strategy

in breaking into any computer system, whether it runs Unix, NT, or some other

operating system. His success was also based on mistakes in configuration and

management of the targeted system, something that we can all learn from.

RECON

The beginning of any attack involves selecting the potential target. In many cases,

almost any system will do, especially when the goal is to set up a relay system that

can be used to hide the source of an attack. In this case, the target was known in

advance because PCWeek advertised the address and offered a $1,000 reward

for the person who could successfully replace the home page on either target

machine. With a choice like this, hackers tend to go after the system they are most

familiar with. (This doesn’t mean hackers will ignore NT servers. If hackers want to

hack, they’ll do it regardless of the OS.)

With the address of the target in hand, Jfs scanned the target’s ports. Port scanning

reveals TCP-based servers such as Telnet, FTP, DNS, and Apache, any of which

are potential access points for an attacker. Jfs’s testing, either with Telnet or netcat

(see Resources), revealed that most of the potentially interesting services refused

connections. Jfs speculated that TCP wrappers provided access control. The Web

server port 80/TCP had to be open for Web access to succeed.

Jfs next used a simple trick. If you send GET X HTTP/1.0 to a Web server, it will

send back an error message (unless there is a file named X) along with the standard

Web server header. The header contains interesting facts, such as the type and

version of the Web server, and sometimes the host operating system and

architecture.

Information like this is gold for an attacker. As the header information is part of the

Web server standard, you can get this from just about any Web server, including

Internet Information Server (IIS). (Note to those using Apache: As the source

code is available for Apache, consider dissembling a bit, perhaps by describing

your server as NT 4 running IIS in the server reply header.)

The PCWeek notice that announced the hack also mentioned that mod-perl was

installed. But mention of mod-perl did not appear in the header (it would have if

actually installed). Still, Jfs tried a mod-perl attack, as well as a server-side-include

attack. In both cases, an attacker sends a carefully crafted browser request that

could trick a vulnerable Web server into returning files that should not have been

accessible through the Web server. Both of these attempts failed.

Jfs next navigated through the Web site and worked out the directory structure

based on links. He found a cgi-bin directory (standard for Apache, but with nothing

of interest in it) and a /photoads/ cgi-bin directory, which looked promising. Jfs

viewed a friend’s copy of the source to the photoads Perl scripts, looking for

mistakes in the code. With the help of a recent article in Phrack, an online hacker

magazine, he found several potentially exploitable mistakes in the Perl code.

CGI AND UNIX

CGI provides the most commonly exploited means of breaking into Unix Web

servers. CGI lets programs process forms or the contents of URLs; the result of

this process gets formatted as a Web page for the requester. NT typically does

similar things in the Scripts directory and with Active Server Page (ASP) scripts.

The exploitable weakness in Unix systems has to do with the scripts written to

process the requests. CGI script writers generally assume that their users will play

by the rules, which is something you should never assume, especially when writing

Internet applications. In particular, any variable in a script that can be affected by a

remote user can potentially be abused.

Jfs discovered that although the script writers had generally been very careful to

strip out potentially dangerous meta characters in user input, they missed the

HTTP_REFERER variable, which is used to test the potential for mod-perl and

server-side-includes. Jfs also discovered a variable named filename that he thought

might be exploitable, even though it would go through filtering and testing.

The filename variable gets set through form input but then is checked to see if it

includes dot-dot (..), the characters used in Unix and NT to indicate the parent

directory. Tricks involving file names with dot-dot let an attacker point a file name

to some otherwise off-limits area. Another test checks for .gif or .jpg suffixes, as

well as for reasonable height vs. width values. Jfs found ways around all of these

tests.

For example, the test for a .gif or .jpg suffix can be foiled by inserting a null

character into the file name: %00 for the Web and \0 for C programmers. Perl

permits the inclusion of nulls in variables, but the Unix system, written in C, treats a

null as the end of a string. So index.html%00.gif passes the test in the photoads

script but refers to the index.html file—the target. In the actual attack, Jfs used a

much longer file name to specify the full pathname to the target index.html file.

The script also contained a test for parameters read from the header of either a

GIF or JPEG file. But Jfs realized that values of zero would satisfy the GIF tests, so

any file that contained zeroes in the sixth through ninth bytes would be accepted.

But Jfs ran into another hurdle: only file names consisting totally of digits were

accepted, and were then renamed. This test blew away his attempt to point the file

name at the location of his choice.

TWISTS

Or did it? Linux systems limit the total file name lengths to 1,024 characters. File

names that surpass this limit cause the rename-system-call to fail, and the script

under attack simply assumes that the rename succeeds. This fact left the way open

for Jfs to specify the file name of his choice, providing that he used a long file name,

following a return (%0a) and 1,024 digits.

Using this trick, Jfs attempted to overwrite the target index.html file, but the trick

failed. Most likely, index.html had permissions and ownership preventing a script to

overwrite it (scripts under Apache will run as the “nobody” user unless changed in

the configuration file). So it was time for another approach.

Jfs found that permissions in the scripts in the photoads/cgi-bin directory permitted

the nobody user to overwrite them. (Allowing these scripts to be written or owned

by the nobody user is a configuration mistake that you should avoid.) Jfs

discovered a candidate for overwriting: a script named advisory.cgi that was

apparently not used elsewhere. The easy thing to do would’ve been to upload a

shell script, but there was a problem.

The test for correct height and width prevented Jfs from putting in the magic

characters that must begin a shell script (#!/bin/sh), as the sixth through ninth bytes

must be either zero or very small (and n/sh wouldn’t work). But the header format

for an executable file on Linux running on i386 does contain zeroes in the critical

bytes. So Jfs uploaded a compiled program to replace advisory.cgi.

But Apache sets a limit on the maximum URL size. The program must fit after the

long ad-number file name (over 1,024 bytes), but be less than 7,000 bytes after

being converted to HTML (in which each byte gets converted into three

characters; for example, zero becomes %00). Even Jfs’s simplest program turned

out to be too large. He surmounted this difficulty by hand-stripping the executable

files to bring them down to an acceptable size.

Jfs wrote several programs that he could execute by overwriting advisory.cgi . He

used http://securelinux.hackpcweek.com/photoads/cgi-bin/advisory.cgi to execute

them. (Note that you can make your Web servers safer by writing C programs

instead of using scripts; that is, if you’re a good C programmer and avoid things

like system(), popen() , and the execl*() system calls.)

At this point, Jfs could execute arbitrary code, within limits, but couldn’t overwrite

the target file. The solution? Get root. A root exploit for the version of Linux used

on the target system had appeared on BugTraq (a forum for discussing and

announcing security vulnerabilities) just weeks previously. This exploit involved the

use of cron (the clock daemon, similar to the AT command under NT) and cron’s

use of Sendmail to deliver notification to the user. The exploit can run arbitrary

scripts as root, and Jfs used this to create a set-user-ID (SUID) root shell that

could also execute arbitrary scripts or commands as root. Finally, he uploaded his

own version of the index.html file and used the SUID shell to overwrite the target

version. Game over. Collect $1000.

EPILOG

Could this attack have been prevented? Yes. Small mistakes in the Perl scripts in

the photoads/cgi-bin directory provided the initial toehold. A patch for the cron

vulnerability was available. Also, there were several places where the use of

correct file permissions and ownerships would also have foiled the attack. In other

words, with a little attention to detail and better system administration, the attack

would have failed (this version of it, at least).

What I find so interesting about the attack, which Jfs said took 20 hours to

complete, are the many twists and turns that it took. One bit of information, the

directory layout, led to the discovery of vulnerable scripts, which led to a script

being overwritten, which led to the uploading of executable code, which finally led

to the uploading of an exploit and success. The crooked path that Jfs had to follow

illustrates just how many factors can lead to a compromise. As usual, success is in

the details—for both the attacker and the defender.

Resources

PCWeek labs site, with pointers to notes from successful attacker Jfs, is located at

www.hackpcweek.com . -->

Jfs, the successful PCWeek hacker, has his own site at

http://hispahack.ccc.de/en/mi019en.htm .

www.windows2000test.com . -->

http://crack.linuxppc.org . -->

In issue 55 of Phrack magazine, article number seven provides notes about

common mistakes in Perl CGI scripts. Go to www.phrack.com .

Home Office Online, the seller of the PhotoAds scripts that had some minor

problems, has a site at www.hoffice.com .

A sources for netcat includes www.avian.org and--> www.l0pht.com .

BugTraq, a forum for discussing and announcing security vulnerabilities, can be

found at www.securityfocus.com .

Rik Farrow is an independent security consultant. His Web site, www.spirit.com ,

contains security links and information about network and computer security

courses. He can be reached at rik@spirit.com .

